NONLINEAR AND LINEAR WAVE PROCESSES
IN ELECTROHYDRODYNAMICS TAKING ACCOUNT
OF CHARGE DIFFUSION
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The investigation performed below is applicable to nonstationary electrohydrodynamic flows in which
charged-particle diffusion processes play an essential part. Examples of such flows are nonstationary flows
with moving electric charge fronts [1, 2], flows with gasdynamic parameter discontinuities, boundary layers
near electrode grids, flows with electrification of bodies during motion in streams, the phenomenon of electric
charge formation and methods to control it in different technological processes [2], ete. The extraordinary
electrohydrodynamic situation also occurs during combustion in an electrie field [3], for instance, when alaminar
flame front is placed between plane electrodes [4, 5]. In this case, charged domains of opposite charge are
formed on either side of the combustion front (between the electrode and the flame). The massive electrical
forces acting on the flow hydrodynamics during combustion result in different electrohydrodynamiec effects into
whose description the charge diffusion must be taken into account especially near the combustion front, By
varying the applied voltage, different nonstationary transients can be obtained with the adjustment of the elec-
trical and hydrodynamical parameters in the charged domains and can act effectively on the eombustion front.

1., BURGERS EQUATION FOR THE ELECTRIC FIELD INTENSITY

The transfer and dissipation processes due to viscosity and heat conductivity are considered inessential
in the examples presented above; hence, we shall utilize the following system of equations [1, 2, 4] to describe
electrohydrodynamic flows with charged-particle diffusion taken into account:

JE/ot +4J’I§j _—"(I'Ot H)C; (1‘1)

rot E = 0; (1.2)

div E = 4ng; (1.3)

J = q(bE + v)— D grad g; (1.4)
dp/dt - div pv = 0; (1:5)

pdv/dt + gradp = gE; (1.(?)

p = pRT; (1.'7)

CypdT/dt 4 p divv =(j — ¢v)E, (1.8)

where v, E, H, j are the vectors of the velocity of the medium, the electric and magnetic field intensities, and
the current density p, p, T are the density, pressure and temperature, q is the volume electric charge density,
R is the gas constant, Cy is the specific heat at constant volume, D and b are diffusion coefficients, and ¢ is

the speed of light,
Applying the divergence operation to both sides of (1,1) we obtain the law of charge conservation
dg/dt +div j =0,

which is, together with (1.2)-(1.8), the known system of electrohydrodynamics equations {1, 2], Eliminating j
and q from (1.1)-(1.4), we obtain an equation for the electric field intensity

OE/ot +(v + bE)div E — DAE = rot He. (1.9)

Assuming the flow to possess some spatial symmetry, we set the right side of the equation identically equal to
zero. Inthe case of a weak electrohydrodynamic (EHD) interaction (the right sides of (1.6) and (1.8) are zero),
we can consider that v=const. Then (1.9) is the three-dimensional analog of the Burgers equation, known in
hydrodynamics [6-8], which describes the origination and formation of a shock in which charged-particle diffu-
sion plays the part of viscosity. Going over to an inertial coordinate system, we obtain in the one-dimensional
case
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9E/0t 4+ bEBE/dt = D@ E/oz",

(1.10)
which by using the Hopf substitution [9]

D 3
reduces to the linear equation of heat conduction

oE/at = Do F/ox?,
Then the solution of (1.10) with the initial condition E (x, 0)=E,(x) can be written in the form
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The necessary condition for convergence of the integral in (1,11) is

b 5 E,(nydn<constz, - o0,
8

Considering the evolution of the initial perturbations, which damp as x—* =, we put
T
b i E, () dn = bD < oo.
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Let us note that for the invariant (1,12), which is the integral of motion for the Burgers equation (1.10), there is a

potential difference in the initial perturbations at the ends of the time-conserving segment of integration in our
case, Taking account of
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It follows from (1.13) that as t —= the solution depends only on the magnitude of the electric potential of the
initial perturbation,

As D~ 0 the asymptotic formula (1.13) is simplified
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which yields in the limit as D~0

1 =z
lim E(z, t—~oo) ={ & 7' 0 < z<< |V 2bDt,
o 0, z<0, z> ) 2bdt.
2. STATIONARY SOLUTION OF THE BURGERS EQUATION

The Burgers equation also allows a stationary solution in the form of a traveling wave being propagated

without deformation at a constant velocity W, Substituting E =f(x~Wt)=f({) and being interested in bounded
solutions, we obtain for the wave being propagated to the right
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{c; and ¢, are constants of integration). The solution (2.1) is a certain wave of the electrical field intensity
which is similar to a shock or rarefaction wave. The magnitude of the jump and the characteristic value of
the transition domain equal 2c and D/ be,, respectively, i.e., are determined from the boundary conditions of
the problem. In order to illustrate the properties of a stationary wave, let us be given (although formally) the
following conditions:

=0, E=F, z-+0, E =E, 2.2)

We hence obtain

w
C]_:T—Eo, Cy =

El - E2
—
By —2~5+ B
The velocity of stationary wave propagation W hence remains arbitrary. In order to determine it, certain addi-
tional considerations are needed. Either the electrical charge density being propagated together with the wave
(i.e., the derivative of the electrical field with respect to the coordinate), or the rate of its formation in an
infinitely narrow zone of ion generation in the wave front must be given as an additional condition to (2.2). By
setting

’ g, dE be, C%cz
x — = -——..0 — = — __.0 ———

0, o 4 dx |x—0 28D (1.— cp)®

we obtain
_ b(E.+ Ey) | 4n 7a
W= 2 % E,—Ey 2.3)
c :EI*EEJ_!”T'D qo Cy = bey (B, —Ey)
1 3 T be, B, —Ey 2 8D~ g4,

It is seen from (2.3) that the half-width 2¢4 and the velocity of wave propagation W depend on the values E; and
E, and the properties of the charged gas.

Let us make numerical estimates, For example, the characteristic values of the electrical parameters
on each side of the combustion front are the following during combustion in an electrical field: E;~10° V/cm,
E,~10 V/em, q,~10° cm~3-e (e is the chargeon anelectron);b~1 em?/ V.sec,D~1cm?/sec, £,~1. Then the
magnitude of the jump is 2¢; ~10% V/cm, the half-width of the wave is A=D/bcy ~2+1073 cm, and the wave
velocity is W~5-10%2 em/sec. Itisassumedinthese estimates that the space charge is formed by ions, When
the majority of charge carriers are electrons, by setting By ~10° V /em, Eg~ 0, ¢y ~10°cm™+ e, b~10’em?V: sec,
D~ 10% em¥sec, £, ~ 1, we obtain 2¢, ~ 1.4+ 102 V/cm, A =D/bcy ~ 1.4+ 107%em, W~7-10* cm/sec. Asisseenfrom
the estimates presented, the magnitude of the jump and the half-widthof the wave are determined mainly by the
electrical field intensity in front of and behind the wave front, while the wave propagation velocity depends es-
sentially on the mobility of the charged particles being formed in the wave because of ionization, or formed in

the initial instant by some source.

Let us note that the investigation presented above can be applicable to nonstationary electrohydrodynaniic
flows when the velocity of the medium v in (1.9) is determined from the flow hydrodynamics, i.e., in the approxi-

mation of weak electrohydrodynamic interaction.
3. LINEAR EHD WAVES TAKING ACCOUNT OF CHARGE DIFFUSION
Now, let us examine the case when it is impossible to neglect electrohydrodynamic interaction.

In the case when the electrical mass forces exert a substantial effect on the flow hydrodynamics, the
velocity of the medium depends on the magnitude of the field intensity and is determined from (1.5)-(1.8). Tn
the one-dimensional case, we obtain for curl H=0

a 8 d a . E? _
Tp—k%pvzo, pd—tv———ax(P SR)’ P PRT,
d a b 8 D a2
Cvp "‘—dt T+ P—-—ax v = —_'4“ E2 _am E — in E 922 E7 (341)

oF oE 9:E
T+ @B 5 = G
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The system (3.1) is a complete system of electrohydrodynamic equations for one-dimensional flows with charge
diffusion taken into account, Linear electrohydrodynamic waves without diffusion were considered in [5, 10}, In
particular, acoustic wave propagation in charged media being formed during combustion in an electrical field
was investigated in [5].

Let us linearize the system (3.1) by denoting the parameters of the unperturbed state by a zero subscript
and considering them constants, while the perturbations will be denoted by primed quantities. In a coordinate
system moving at the velocity v, we obtain

_BE (3.2)

6 02: = =

+ bE, 22
3.3)

i O Y I ]
o = e — [ ? — (1) bE, atax+(V 1)D6tﬂx

where a =V vpy/p, is the thermodynamic speed of sound, and vy is the adiabatic mdex.
The usual acoustics equation follows from (3.3) in the absence of an electrical field (E,=0).

As is seen from (3.2), in a linear approximation with v =const the gasdynamic parameters exert no in-
fluence on the field formation. The solution of (3.2), which is a linear heat conduction equation, can be written
in the form

to 4 .
E (2, 1) = 41,‘ — 5’ oI Py & 0) 3.4)

where E'¢, 0)=E'¢, )|, - o is the initial perturbation,

Now (3.3) is an inhomogeneous wave equation in which E'{x, t) is expressed from (3.4), Let us write the
solution of this wave equation

x+at i xta(i—1)
-+ . —

(-27 t) (P(.’AD at) b (P(z‘ at). 5 \l‘ E) dg_l__ 2a S‘d’r S f(g, T) d§1 (3.5)

x—at [ x—af{t—x)

’ 8
¢E=pGE0 vE=757PGEnD,
e E, PE’ RE’ BE
FE ==L TE (1) bE, PRt (y— 1) D e |,
In the particular case when the medium is described by a polytropic law of state

p = const p", (3.6)

where n is the polytropy index, the system of equation simplifies substantially: Instead of the third and fourth
equations from (3.1) we write the relationship (3.6). In this case we also obtain a system of equations analogous
to (3.2) and (3.3) with the sole difference that the function f{£, 7) in the right side of the inhomogeneous wave
equations (3.3) and its solution (3.5) has the form

__npo E, aE’
f(gr T) = Po 4,“ agz .

If we seek the solution of (3.2) and (3.3) in the form of plane waves ' (x, t)=p', ei(kx"'*’t) Efx, t)=
E', ellkx-wt) [11, 12], where p!, and E!, are constants), then a dispersion relattonshlp

(@ — bE¢k < iDE¥)(0® — a%?)= 0. (3.7)
can be obtained by using standard operations,
This dispersion relationship determines three waves: Two acoustic waves being propagated to opposite

sides with the velocity @, and the electrical field intensity wave whose phase velocity equals

Re
Y = bE, +ZDImk

Let us note that the linearized system (3.2), (3.3) is valid, strlctly speaking, just for a quasineutral me~
dium in the unperturbed state (Ey=const).

If the medium has the space charge q;=0, the stationary electrical field intensity, pressure, density, and
temperature distributions in the unperturbed state are then subject to the following relations {or v,=0):
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where ¢y, ¢4, €3, 3 are constants of integration. These relationships follow from the system (3.1) written in
the stationary case for v,=0.

If the unperturbed parameters of the medium are determined from (3.8), then the linearized system (3.1)
has the form

92E , 9E,

, an i _
T VR R B, — DT v ),
B, _ " ap’ 1 0B | -, 9B\
o T P 6.7: 0, P R "‘E(Eﬂ ox - > =0,
C0p b E' b oF
vy o R 2 —_— el |}
Rt T at + Py ax 4in Eq 3z In EE oz +

D . #E |, D ., 3E,
ta bt E =0

i

Seeking the solution of this system in the form of plane waves, and equating the determinant of this system to
zero, we can obtain the following dispersion relation:

P ., 8B, - i E, oF dE,
m3+[LDk2—bE0k+;b—5;"lm2—[a2k2+—4—— okt g (Eo) o —

T Pe Bz
, D y—18E 1 B2 —1{ 0E E oE
_ iDa* + E, [azb— ot 7,5] K — ib [a2+ ot ] sy 1] az"[D o E, °]k 0. (3.9)

One of the four solutions of the dispersion relationship is the trivial solution w =0, which is not included
in (3.9). It is also evident that the dispersion relation (3.7) is a particular case of (3.9) with Eg=const, With-
out writing down the explicitly awkward solutions of the cubic equation, let us just present some approximate
results,

In particular, we have for the short waves of the high-frequency branch
o® = iDa?kt, (3.10)

and for the long waves

_1—y[D 4 [E 9EN?] o,
©° = T [T%(W") —"E( ) ]’“

The dispersion relationship for the shortwaves in the low-frequency branch has the form
= —iDI?, , (3.11)

while for the long waves

oE, 02E
o=G-1[p(% %
Analyzing the relationships written down, the deduction can be made that charge diffusion processes play the
governing role for shortwaves, This result is perfectly natural since the terms with diffusion are dominant
for fine~-scale phenomena.

- 2bE,,]

In the case when the medium is subjected to the polytropic law of state (3.6), the dispersion relation be-
comes

m3+i(DkZ—Q-ionk-{—‘b—aﬂ‘)m?——[n—pilﬁ—l—i(ﬁ—g— j—f"—n%g—:) k+

1 OE, L
+4npo( )]m—-(Dk3+zbEP24—b k)(zn—k+tl T p")—O.

Separating the high- and low-frequency branches of the solution, we obtain for the short waves in a high-
frequency branch

3 = iDn g—ﬂm, (3.12)
(1]
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while for the long waves

dE, 8 [ p )
3 0 (]
o® =bn = 5% (—-—pn k.

Correspondingly, the dispersion equation for the shortwaves in the low-frequency branch has the form

= —iDk?, {3.13)

while for long waves
B\t @ A
o == 4np,bn (—a;:—”> - (—g‘%) k.

Let us note the agreement between the results for the short waves in the case when the medium is sub-
jected to a polytropic law of state, and in the general case when the energy equation is written down, In par-
ticular, there will be complete correspondence between (3,10) and (3.12) if the polytropic speed of sound is
introduced as a =V npy/p, and (3.11) agrees with (3.13). It should be noted that the polytropic law describes

the state of the medium sufficiently well, for instance, for adiabatic processes proceeding so rapidly that heat
- does not succeed in being transmitted from one point to another.

In conclusion, let us note that the analysis performed and the results obtained are valid for unipolarly
charged flows in which interaction processes between a charged medium and an electric field as well as charge
diffusion play a substantial part.

The authors are grateful to A. G. Kulikovskii and V. B, Librovich for useful discussions and remarks
made. :
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